Chapter 11: Infinite Sequences and Series

Section 1:

Definition 1:

A numerical sequence, or simply a sequence is a function $a, N \rightarrow R$.

Theorem 1:

$\left\{a_{n}\right\}$ is a sequence. We say that $\left\{a_{n}\right\}$ converges to a limit L as $\mathrm{n} \rightarrow \infty$, and we write $\lim _{n \rightarrow \infty} a_{n}=L$, if to each given $\varepsilon>0$, there corresponds a positive integer N such that $n \geq N \Rightarrow\left|a_{n}-L\right|<\varepsilon$

Theorem 2:

$\lim _{n \rightarrow \infty} k=k$ (Where k is a function).
$\lim _{n \rightarrow \infty} \frac{1}{n}=0$

Definition 2:

$\left\{a_{n}\right\}$ is a sequence. If a_{n} does not converge, we say that $\left\{a_{n}\right\}$ diverge.

Theorem 3:

$\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequence. If $a_{n} \rightarrow A$ and $b_{n} \rightarrow B$ the
i. $\quad \lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=A \pm B$
ii. $\quad \lim _{n \rightarrow \infty} a_{n} b_{n}=A B$
iii. $\quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{A}{B}$ provided b_{n} is nonzero and B is also nonzero.

Theorem 4: The Sandwich Theorem:

$\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ are sequences
$\left.\begin{array}{l}a_{n} \leq b_{n} \leq c_{n} \forall n \\ \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L\end{array}\right\} \Rightarrow \lim _{\mathrm{n} \rightarrow \infty} b_{n}=L$
Corollary to Sandwich Theorem (SCT):
$\left\{a_{n}\right\},\left\{c_{n}\right\}$ are sequences:
$\left.\begin{array}{l}\left|a_{n}\right| \leq c_{n} \\ c_{n} \rightarrow 0\end{array}\right\} \Rightarrow a_{n} \rightarrow 0$

Theorem 5:

$\left\{a_{n}\right\}$ is a sequence, $f(x)$ is a function:
$\left.\begin{array}{l}a_{n} \rightarrow L \\ f(x) \text { continuous at } \mathrm{L}\end{array}\right\} \Rightarrow f\left(a_{n}\right) \rightarrow f(L), ~$

Theorem 6:

$\left\{a_{n}\right\}$ is a sequence, $f(x)$ is a function:
$\left.\begin{array}{l}a_{n}=f(n) \quad \forall n \\ \lim _{n \rightarrow \infty} f(x)=L\end{array}\right\} \Rightarrow a_{n} \rightarrow L$

Theorem 7: Six important limits:
$\lim _{n \rightarrow \infty} \frac{\ln n}{n^{\alpha}}=0 \quad$ with $\alpha>0$
$\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
$\lim _{n \rightarrow \infty} x^{\frac{1}{n}}=1$ with $x>0$
$\lim _{n \rightarrow \infty} x^{n}=0$ with $|x|<1$
$\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad$ with $x \in I R$
$\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \quad$ with $x \in I R$

Definition 3:

$\left\{a_{n}\right\}$ is a sequence. $M \in I R$.
i. We say that a_{n} is decreasing if $a_{n+1} \leq a_{n} \quad \forall n$
ii. We say that a_{n} is bounded from above by M if $a_{n} \leq M \quad \forall n$

Theorem 8: Important Theorem (IT):

$\left.\begin{array}{l}\left\{a_{n}\right\} \text { increasing } \\ \left\{a_{n}\right\} \text { bounded from above }\end{array}\right\} \Rightarrow\left\{a_{n}\right\}$ converges.

$\left\{a_{n}\right\}$ unbounded $\Rightarrow\left\{a_{n}\right\}$ diverges.

Section 2:

Definition 1:

$\left\{a_{n}\right\}$ is a sequence. The expression $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots$. is called an infinite series.
The sequence of partial sum of $\sum_{n=1}^{\infty} a_{n}$ is the sequence $\left\{S_{n}\right\}$ defined by: $S_{1}=a_{1}, S_{2}=a_{1}+a_{2}$
$S_{n}=a_{1}+a_{2}+a_{2}+\ldots .+a_{n}$.
We have: $\sum_{n=1}^{\infty} a_{n}\left\{\begin{array}{l}=\lim _{n \rightarrow \infty} S_{n} \text { if }\left\{S_{n}\right\} \text { converges } \\ \text { diverges if }\left\{S_{n}\right\} \text { diverges }\end{array}\right.$

Geometric series:

$a, r \in I R, a \neq 0$
$\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\ldots$ is called a geometric series of ratio r.
The sequence of partial sum $S_{n}=\left\{\begin{array}{l}a \frac{1-r^{n}}{1-r} \text { if } r \neq 1 \\ n a \text { if } r=1\end{array}\right.$ and $\sum_{n=1}^{\infty} a r^{n-1}= \begin{cases}\frac{a}{1-r} \text { if }|r|<1 \\ \text { diverges if }|x| \geq 1\end{cases}$

Theorem 1:

$\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series and $k \in I R$. If $\sum_{n=1}^{\infty} a_{n}=\mathrm{A}$ and $\sum_{n=1}^{\infty} b_{n}=B$ then:
i. $\quad \sum_{n=1}^{\infty} a_{n} \pm b_{n}=A \pm B$
ii. $\quad \sum_{n=1}^{\infty} k a_{n}=k A$

Theorem 2: The $n^{\text {th }}$ term test:
$\sum_{n=1}^{\infty} a_{n}$ is a series. If $\sum_{n=1}^{\infty} a_{n}$ converges $\Rightarrow a_{n} \rightarrow 0$
Equivalently: $a_{n} \nrightarrow 0 \Rightarrow \sum_{n=1}^{\infty} a_{n}$ diverges.
(The converse of this theorem is not always true).
Useful Remark: (UR):
$\left\{a_{n}\right\}$ is a sequence. $a_{n} \rightarrow 0 \Rightarrow\left|a_{n}\right| \rightarrow 0$. Equivalently, $\left|a_{n}\right| \nrightarrow 0 \Rightarrow a_{n} \nrightarrow 0$.

Important Remark: (IR):

$\sum_{n=1}^{\infty} a_{n}$ is a series, N is a positive integer. Then, $\sum_{n=1}^{\infty} a_{n}$ converges $\Leftrightarrow \sum_{n=N}^{\infty} a_{n}$ converges.

Section 3:

Definition 1:

If $a_{n} \geq 0 \quad \forall n$, we say $\sum_{n=1}^{\infty} a_{n}$ is a series of nonnegative terms.
If $a_{n}>0 \quad \forall n$, we say $\sum_{n=1}^{\infty} a_{n}$ is a series of positive terms.

Corollary to IT: (CIT):

$\sum_{n=1}^{\infty} a_{n}$ is a series of nonnegative terms. S_{n} is the series of partial sum of $\sum_{n=1}^{\infty} a_{n}$.
Then: $\sum_{n=1}^{\infty} a_{n}$ converges $\Leftrightarrow\left\{S_{n}\right\}$ is bounded from above.

Theorem 1: Integral test:

$\sum_{n=1}^{\infty} a_{n}$ is a series of nonnegative terms. $f(x)$ is a function that is continuous and decreasing on
$(0, \infty)$ with $a_{n}=f(n) \forall n$. Then: $\sum_{n=1}^{\infty} a_{n}$ converges $\Leftrightarrow \int_{1}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{1}^{b} f(x) d x$ converges.

Section 4:

Theorem 1: Direct Comparison Test: (DCT):
Given $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} c_{n}$, and $\sum_{n=1}^{\infty} d_{n}$ series of nonnegative terms.
Then:
i. $\quad a_{n} \leq c_{n} \quad \forall n: \sum_{n=1}^{\infty} c_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges.
ii. $\quad a_{n} \geq d_{n} \quad \forall n: \sum_{n=1}^{\infty} d_{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ diverges.

Theorem 2: Limit Comparison Test: (LCT):

$\sum_{n=1}^{\infty} a_{n}$ series of nonnegative terms.
$\sum_{n=1}^{\infty} b_{n}$ series of positive terms.
i. $\left.\begin{array}{ll}\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L \\ 0<L<\infty\end{array}\right\} \Rightarrow \sum_{n=1}^{\mathbb{N}} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge of both diverge.
ii. $\left.\begin{array}{l}\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0 \\ \sum_{n=0}^{\infty} b_{n} \text { converges }\end{array}\right\} \Rightarrow \sum_{n=1}^{\aleph} a_{n}$ converges
iii. $\left.\begin{array}{ll} & \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty \\ & \sum_{n=1}^{\infty} b_{n} \text { diverges }\end{array}\right\} \Rightarrow \sum_{n=1}^{\aleph} a_{n}$ diverges

Section 5:

Theorem 1: The Ratio Test:
Suppose $\sum_{n=1}^{\infty} a_{n}$ is a series of positive terms.
Suppose $\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$, then:
i. $\quad \rho<1 \Rightarrow$ series converges
ii. $\quad \rho>1 \Rightarrow$ series diverges
iii. $\quad \rho=1 \Rightarrow$ Test fails

Theorem 2: The Root Test:

Suppose $\sum_{n=1}^{\infty} a_{n}$ is a series of nonnegative terms.
Suppose $\rho=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$, then:
iv. $\quad \rho<1 \Rightarrow$ series converges
v. $\quad \rho>1 \Rightarrow$ series diverges
vi. $\quad \rho=1 \Rightarrow$ Test fails

Section 6:

Definition 1:

Suppose $\left\{a_{n}\right\}$ is a sequence of positive terms, then: $\sum_{n=1}^{\infty}(-1)^{n} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots$ is called an alternating series.

Theorem 1: The Alternating Series Test (AST):

$\left.\begin{array}{cc} & a_{n}>0 \forall n \\ \text { Suppose } & a_{n+1} \leq a_{n} \\ & a_{n} \rightarrow 0\end{array}\right\} \Rightarrow \sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.

Theorem 2: Alternating Series Estimation Theorem (ASET):

$\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ is an alternating series. $\left\{S_{n}\right\}$ is the sequence of partial sums. Then:
$\left.\begin{array}{l}\begin{array}{l}a_{n}>0 \forall n \\ a_{n+1} \leq a_{n} \\ a_{n} \rightarrow 0\end{array} \quad \forall n\end{array}\right\} \Rightarrow \sum_{n=1}^{\infty}(-1)^{n} a_{n}=S_{n}+$ error, with |error|$\leq \mid$ first unused term| , and "error" has the same sign as the first unused term.

Theorem 3: Absolute Convergence Test (ACT):
$\sum_{n=1}^{\infty} a_{n}$ is a series: $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges.

Definition 2:

$\sum_{n=1}^{\infty} a_{n}$ is a series that converges. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges and $\sum_{n=1}^{\infty} a_{n}$ converges, we say that $\sum_{n=1}^{\infty} a_{n}$ converges conditionally.

Section 7:

Definition 1:
A series of the form $\sum_{n=1}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots$ is called a power series of center a , and of coefficient $c_{0}, c_{1}, c_{2}, \ldots$

Theorem 1:

$\sum_{n=1}^{\infty} c_{n}(x-a)^{n}$ is a power series, then:

Theorem 2:

$\sum_{n=1}^{\infty} c_{n}(x-a)^{n}$ is a power series with radius of convergence R. Suppose $I=(a-R ; a+R)$ the internal of interval of convergence.

Suppose $f(x)=\sum_{n=1}^{\infty} c_{n}(x-a)^{n} \quad$ with $x \in I$, then this function is infinitely differentiable on I, and $f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \quad$ with $x \in I$
$f^{\prime \prime}(x)=\sum_{n=1}^{\infty} n(n-1) c_{n}(x-a)^{n-2} \quad$ with $x \in I$

Theorem 3:

$\sum_{n=1}^{\infty} c_{n}(x-a)^{n}$ is a power series with radius of convergence R and suppose $I=(a-R ; a+R)$ the internal of interval of convergence, then:
$\int f(x) d x$ exists for all x in I, and $\int f(x) d x=c+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1}$ for $x \in I$

Theorem 4:

$\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ are 2 power series with radii of convergence R_{1} and R_{2} respectively.
Suppose R is the minimum of R_{1} and R_{2}, then: $\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty} c_{n} x^{n}$ for $|x|<R$ where $c_{n}=\sum_{k=0}^{n} a_{n-k} b_{k}$.

Section 8:

Definition 1:

I is a open interval of center a.
$f(x)$ is a function which is infinitely differentiable on I.
n a positive integer.
Then: The Taylor polynomial of order n generated by f at $x=a$ is:
$P_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(x)}{2!}(x-a)^{2}+\ldots \ldots . .+\frac{f^{(n)(a)}}{n!}(x-a)^{n}$
The Taylor series generated by $f(x)$ at $x=a$ is
$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(x)}{2!}(x-a)^{2}+\ldots \ldots .$.

Section 9:

Taylor's Theorem:

I is an open interval of center a.
$f(x)$ is a function which is infinitely differentiable on I.
Suppose $P_{n}(x)$ is a Taylor polynomial of order n generated by f at $x=a$.
Then: $f(x)=P_{n}(x)+R_{n}(x)$ with $R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$ for some c strictly between 0 and x.

Section 10:

Theorem 1: The Binomial Theorem:
$m \in I R,(1+x)^{m}=1+m+\sum_{n=2}^{\infty}\binom{m}{n} x^{n}$ for $|x|<1 \quad$ where $\binom{m}{n}=\frac{m(m-1)(m-2) \ldots \ldots .[m-(m-1)]}{n!}$

Section 11:

Definition 1:

$I=[a, b]$ is a closed interval, and $f(x)$ function defined on I.
We say that f is piecewise continuous on I if:
i. $\quad f$ has only finitely many points of discontinuity on .
ii. If $x_{0} \in(a, b)$ is a point of discontinuity of f, then $f\left(x_{0}^{-}\right)=\lim _{x \rightarrow x_{0}^{-}} f(x)$ and $f\left(x_{0}^{+}\right)=\lim _{x \rightarrow x_{0}^{+}} f(x)$ both exists.
iii. $\quad f\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} f(x)$ and $f\left(a^{-}\right)=\lim _{x \rightarrow b^{-}} f(x)$ both exists.

Definition 2:

$f(x)$ is a piecewise continuous function on $[0,2 \pi]$. The Fourier series of f is defined as
$a_{0}+2 \sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ with:
$a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \cos n x d x \quad n=1,2,3, \ldots \ldots$
$b_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \sin n x d x \quad n=1,2,3, \ldots \ldots$

Theorem 1:

$f(x)$ is a function defined on $[0,2 \pi]$
if f and f^{\prime} are piecewise continuous on $[0,2 \pi]$, then : continuity discontinuity

$$
a_{0}+2 \sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)= \begin{cases}\frac{f(x)}{\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}} & \text { if } x \text { is a point of continuity of } f \\ \frac{f\left(0^{+}\right)+f\left(2 \pi^{-}\right)}{2} & \text { if } x=0 \\ \frac{f\left(2 \pi^{-}\right)+f\left(0^{+}\right)}{2} & \text { if } x=2 \pi\end{cases}
$$

