Chapter 11: Infinite Sequences and Series

Section 1:

Definition 1:

A numerical sequence, or simply a sequence is a function $a, N \rightarrow R$.

Theorem 1:

 $\{a_n\}$ is a sequence. We say that $\{a_n\}$ converges to a limit L as $n \to \infty$, and we write $\lim a_n = L$, if to

each given $\varepsilon > 0$, there corresponds a positive integer N such that $n \ge N \Rightarrow |a_n - L| < \varepsilon$

Theorem 2:

 $\lim_{n \to \infty} k = k$ (Where k is a function). $\lim_{n \to \infty} \frac{1}{n} = 0$

Definition 2:

 $\{a_n\}$ is a sequence. If a_n does not converge, we say that $\{a_n\}$ diverge.

Theorem 3:

 $\{a_n\}$ and $\{b_n\}$ are sequence. If $a_n \to A$ and $b_n \to B$ the

- i. $\lim_{n \to \infty} (a_n \pm b_n) = A \pm B$
- ii. $\lim_{n \to \infty} a_n b_n = AB$

iii.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$$
 provided b_n is nonzero and B is also nonzero.

Theorem 4: The Sandwich Theorem:

 $\{a_n\}, \{b_n\}, \{c_n\} \text{ are sequences}$ $a_n \le b_n \le c_n \quad \forall n \\ \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ $\implies \lim_{n \to \infty} b_n = L$

Corollary to Sandwich Theorem (SCT):

 $\{a_n\}, \{c_n\} \text{ are sequences:}$ $|a_n| \le c_n \quad \forall \mathbf{n} \\ c_n \to 0$ $\Rightarrow a_n \to 0$

Theorem 5:

Theorem 6:

 $\{a_n\}$ is a sequence, f(x) is a function:

$$a_n = f(n) \quad \forall n \\ \lim_{n \to \infty} f(x) = L$$
 $\Rightarrow a_n \to L$

Theorem 7: Six important limits:

$$\lim_{n \to \infty} \frac{\ln n}{n^{\alpha}} = 0 \quad \text{with } \alpha > 0$$
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$
$$\lim_{n \to \infty} x^{\frac{1}{n}} = 1 \quad \text{with } x > 0$$
$$\lim_{n \to \infty} x^{n} = 0 \quad \text{with } |x| < 1$$
$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n} = e^{x} \quad \text{with } x \in IR$$
$$\lim_{n \to \infty} \frac{x^{n}}{n!} = 0 \quad \text{with } x \in IR$$

Definition 3:

 $\{a_n\}$ is a sequence. $M \in IR$.

- i. We say that a_n is decreasing if $a_{n+1} \le a_n \quad \forall n$
- ii. We say that a_n is bounded from above by M if $a_n \le M \quad \forall n$

Theorem 8: Important Theorem (IT):

 $\{a_n\} \text{ increasing} \\ \{a_n\} \text{ bounded from above} \} \Rightarrow \{a_n\} \text{ converges.} \\ \{a_n\} \text{ decreasing} \\ \{a_n\} \text{ bounded from below} \} \Rightarrow \{a_n\} \text{ converges}$

 $\{a_n\}$ unbounded \Rightarrow $\{a_n\}$ diverges.

Section 2:

Definition 1: { a_n } is a sequence. The expression $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$ is called an infinite series. The sequence of partial sum of $\sum_{n=1}^{\infty} a_n$ is the sequence { S_n } defined by: $S_1 = a_1$, $S_2 = a_1 + a_2$

 $S_n = a_1 + a_2 + a_2 + \dots + a_n.$ We have: $\sum_{n=1}^{\infty} a_n \begin{cases} = \lim_{n \to \infty} S_n & \text{if } \{S_n\} \text{ converges} \\ \text{diverges if } \{S_n\} & \text{diverges} \end{cases}$

Geometric series:

 $a, r \in IR, a \neq 0$ $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^{2} + \dots \text{ is called a geometric series of ratio } r.$

The sequence of partial sum $S_n = \begin{cases} a \frac{1-r^n}{1-r} & \text{if } r \neq 1 \\ na & \text{if } r = 1 \end{cases}$ and $\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \frac{a}{1-r} & \text{if } |r| < 1 \\ \text{diverges if } |x| \ge 1 \end{cases}$

Theorem 1:

$$\sum_{n=1}^{\infty} a_n \text{ and } \sum_{n=1}^{\infty} b_n \text{ are series and } k \in IR \text{. If } \sum_{n=1}^{\infty} a_n = A \text{ and } \sum_{n=1}^{\infty} b_n = B \text{ then:}$$
i.
$$\sum_{n=1}^{\infty} a_n \pm b_n = A \pm B$$
ii.
$$\sum_{n=1}^{\infty} ka_n = kA$$

Theorem 2: The nth term test:

 $\sum_{n=1}^{\infty} a_n \text{ is a series. If } \sum_{n=1}^{\infty} a_n \text{ converges } \Rightarrow a_n \to 0$ Equivalently: $a_n \not\to 0 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ diverges.}$

(The converse of this theorem is not always true).

Useful Remark: (UR):

 $\{a_n\}$ is a sequence. $a_n \to 0 \Rightarrow |a_n| \to 0$. Equivalently, $|a_n| \neq 0 \Rightarrow a_n \neq 0$.

Important Remark: (IR):

 $\sum_{n=1}^{\infty} a_n \text{ is a series, } N \text{ is a positive integer. Then, } \sum_{n=1}^{\infty} a_n \text{ converges} \Leftrightarrow \sum_{n=N}^{\infty} a_n \text{ converges.}$

Section 3:

Definition 1:

If $a_n \ge 0 \quad \forall n$, we say $\sum_{n=1}^{\infty} a_n$ is a series of nonnegative terms. If $a_n > 0 \quad \forall n$, we say $\sum_{n=1}^{\infty} a_n$ is a series of positive terms.

Corollary to IT: (CIT):

$$\sum_{n=1}^{\infty} a_n$$
 is a series of nonnegative terms. S_n is the series of partial sum of $\sum_{n=1}^{\infty} a_n$
Then: $\sum_{n=1}^{\infty} a_n$ converges $\Leftrightarrow \{S_n\}$ is bounded from above.

Theorem 1: Integral test:

 $\sum_{n=1}^{\infty} a_n \text{ is a series of nonnegative terms. } f(x) \text{ is a function that is continuous and decreasing on}$ $(0,\infty) \text{ with } a_n = f(n) \quad \forall n \text{ . Then: } \sum_{n=1}^{\infty} a_n \text{ converges } \Leftrightarrow \int_{1}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{1}^{b} f(x) dx \text{ converges.}$

Section 4:

Theorem 1: Direct Comparison Test: (DCT):

Given $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} c_n$, and $\sum_{n=1}^{\infty} d_n$ series of nonnegative terms. Then:

i. $a_n \leq c_n \quad \forall n : \sum_{n=1}^{\infty} c_n \text{ converges} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converges.}$ ii. $a_n \geq d_n \quad \forall n : \sum_{n=1}^{\infty} d_n \text{ diverges} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ diverges.}$

Theorem 2: Limit Comparison Test: (LCT):

 $\sum_{n=1}^{\infty} a_n \text{ series of nonnegative terms.}$ $\sum_{n=1}^{\infty} b_n \text{ series of positive terms.}$ i. $\lim_{n \to \infty} \frac{a_n}{b_n} = L$ $0 < L < \infty$ $\implies \sum_{n=1}^{\kappa} a_n \text{ and } \sum_{n=1}^{\infty} b_n \text{ both converge of both diverge.}$ ii. $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ $\sum_{n=0}^{\kappa} b_n \text{ converges}$ $\implies \sum_{n=1}^{\kappa} a_n \text{ converges}$ $\implies \sum_{n=1}^{\kappa} a_n \text{ converges}$ $\implies \sum_{n=1}^{\kappa} a_n \text{ diverges}$ $\implies \sum_{n=1}^{\kappa} a_n \text{ diverges}$

Section 5:

Theorem 1: The Ratio Test:

Suppose $\sum_{n=1}^{\infty} a_n$ is a series of positive terms. Suppose $\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$, then: i. $\rho < 1 \Rightarrow$ series converges ii. $\rho > 1 \Rightarrow$ series diverges iii. $\rho = 1 \Rightarrow$ Test fails

Theorem 2: The Root Test:

Suppose $\sum_{n=1}^{\infty} a_n$ is a series of nonnegative terms. Suppose $\rho = \lim_{n \to \infty} \sqrt[n]{a_n}$, then: iv. $\rho < 1 \Rightarrow$ series converges v. $\rho > 1 \Rightarrow$ series diverges

vi.
$$\rho = 1 \Rightarrow$$
 Test fails

Section 6:

Definition 1:

Suppose $\{a_n\}$ is a sequence of positive terms, then: $\sum_{n=1}^{\infty} (-1)^n a_n = a_1 - a_2 + a_3 - a_4 + \dots$ is called an alternating series.

Theorem 1: The Alternating Series Test (AST):

 $\left. \begin{array}{c} a_n > 0 \ \forall n \\ \text{Suppose } a_{n+1} \leq a_n \ \forall n \\ a_n \rightarrow 0 \end{array} \right\} \Rightarrow \sum_{n=1}^{\infty} (-1)^n a_n \text{ converges.}$

Theorem 2: Alternating Series Estimation Theorem (ASET):

 $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is an alternating series. $\{S_n\}$ is the sequence of partial sums. Then: $\begin{vmatrix} a_n > 0 & \forall n \\ a_{n+1} \le a_n & \forall n \\ a_n \to 0 \end{vmatrix} \Rightarrow \sum_{n=1}^{\infty} (-1)^n a_n = S_n + error, \text{ with } |error| \le | \text{ first unused term}|, \text{ and "error" has the }$

same sign as the first unused term.

Theorem 3: Absolute Convergence Test (ACT):

$$\sum_{n=1}^{\infty} a_n \text{ is a series: } \sum_{n=1}^{\infty} |a_n| \text{ converges} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converges }.$$

Definition 2:

 $\sum_{n=1}^{\infty} a_n \text{ is a series that converges. If } \sum_{n=1}^{\infty} |a_n| \text{ diverges and } \sum_{n=1}^{\infty} a_n \text{ converges, we say that } \sum_{n=1}^{\infty} a_n$ converges conditionally.

Section 7:

Definition 1:

A series of the form $\sum_{n=1}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots$ is called a power series of center a, and of coefficient c_0, c_1, c_2, \dots

Theorem 1:

Theorem 2:

 $\sum_{n=1}^{\infty} c_n (x-a)^n$ is a power series with radius of convergence R. Suppose I = (a-R; a+R) the internal of interval of convergence.

Suppose $f(x) = \sum_{n=1}^{\infty} c_n (x-a)^n$ with $x \in I$, then this function is infinitely differentiable on *I*, and $f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$ with $x \in I$ $f''(x) = \sum_{n=1}^{\infty} n(n-1)c_n (x-a)^{n-2}$ with $x \in I$

Theorem 3:

 $\sum_{n=1}^{\infty} c_n (x-a)^n$ is a power series with radius of convergence *R* and suppose I = (a-R; a+R) the internal of interval of convergence, then:

 $\int f(x)dx \text{ exists for all } x \text{ in } I, \text{ and } \int f(x)dx = c + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1} \text{ for } x \in I$

Theorem 4:

 $\sum_{n=0}^{\infty} a_n x^n \text{ and } \sum_{n=0}^{\infty} b_n x^n \text{ are 2 power series with radii of convergence } R_1 \text{ and } R_2 \text{ respectively.}$

Suppose *R* is the minimum of R_1 and R_2 , then: $\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n$ for |x| < R

where
$$c_n = \sum_{k=0}^n a_{n-k} b_k$$
.

Section 8:

Definition 1:

I is a open interval of center a.

f(x) is a function which is infinitely differentiable on *I*.

n a positive integer.

Then: The Taylor polynomial of order n generated by f at x = a is:

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(x)}{2!}(x-a)^2 + \dots + \frac{f^{(n)(a)}}{n!}(x-a)^n$$

The Taylor series generated by f(x) at x = a is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(x)}{2!} (x-a)^2 + \dots$$

Section 9:

Taylor's Theorem:

I is an open interval of center *a*. f(x) is a function which is infinitely differentiable on *I*. Suppose $P_n(x)$ is a Taylor polynomial of order n generated by *f* at x = a.

Then:
$$f(x) = P_n(x) + R_n(x)$$
 with $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$ for some c strictly between 0 and x.

Section 10:

Theorem 1: The Binomial Theorem:

$$m \in IR$$
, $(1+x)^m = 1 + m + \sum_{n=2}^{\infty} {m \choose n} x^n$ for $|x| < 1$ where ${m \choose n} = \frac{m(m-1)(m-2).....[m-(m-1)]}{n!}$

Section 11:

Definition 1:

I = [a, b] is a closed interval, and f(x) function defined on I.

We say that f is piecewise continuous on I if:

- i. f has only finitely many points of discontinuity on .
- ii. If $x_0 \in (a,b)$ is a point of discontinuity of f, then $f(x_0^-) = \lim_{x \to x_0^-} f(x)$ and $f(x_0^+) = \lim_{x \to x_0^+} f(x)$

both exists.

iii.
$$f(a^+) = \lim_{x \to a^+} f(x)$$
 and $f(a^-) = \lim_{x \to b^-} f(x)$ both exists.

Definition 2:

f(x) is a piecewise continuous function on $[0,2\pi]$. The Fourier series of f is defined as

$$a_{0} + 2\sum_{n=1}^{\infty} (a_{n} \cos nx + b_{n} \sin nx) \text{ with:}$$

$$a_{n} = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx \qquad n = 1, 2, 3, \dots$$

$$b_{n} = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx \qquad n = 1, 2, 3, \dots$$

Theorem 1:

f(x) is a function defined on $[0,2\pi]$

if f and f' are piecewise continuous on $[0,2\pi]$, then : continuity discontinuity

$$a_0 + 2\sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \begin{cases} f(x) & \text{if } x \text{ is a point of continuity of } f\\ \frac{f(x^-) + f(x^+)}{2} & \text{if } x \text{ is not a point of continuity of } f\\ \frac{f(0^+) + f(2\pi^-)}{2} & \text{if } x = 0\\ \frac{f(2\pi^-) + f(0^+)}{2} & \text{if } x = 2\pi \end{cases}$$