
Chapter 11: Infinite Sequences and Series 

 

Section 1: 
Definition 1: 

A numerical sequence, or simply a sequence is a function a, N → R. 
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Definition 2: 

{an} is a sequence. If an does not converge, we say that {an} diverge. 

 

Theorem 3: 

{an} and {bn} are sequence. If BbAa nn →→   and  the 
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Theorem 4: The Sandwich Theorem: 

{an}, {bn}, {cn} are sequences 
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Corollary to Sandwich Theorem (SCT): 

{an}, {cn} are sequences: 
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Theorem 5: 

{an} is a sequence, f(x) is a function: 
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Theorem 6: 

{an} is a sequence, f(x) is a function: 
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Theorem 7: Six important limits: 
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Definition 3: 

{an} is a sequence. IRM ∈ . 

i. We say that an is decreasing if naa nn ∀≤+    1  

ii. We say that an is bounded from above by M if nMan ∀≤    

 

Theorem 8: Important Theorem (IT): 
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Section 2: 
Definition 1: 

{an} is a sequence. The expression ....321
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Geometric series: 
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Theorem 1: 
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Theorem 2: The n
th

 term test: 
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(The converse of this theorem is not always true). 

 

Useful Remark: (UR): 

{an} is a sequence. 00 →⇒→ nn aa . Equivalently, 00 →/⇒→/ nn aa . 

 

Important Remark: (IR): 
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Section 3: 
Definition 1: 
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Section 4: 
Theorem 1: Direct Comparison Test: (DCT): 

Given ∑
∞

=1n

na , ∑
∞

=1n

nc , and ∑
∞

=1n

nd series of nonnegative terms. 

Then: 

i. nca nn ∀≤    : ∑
∞

=1n

nc converges ⇒∑
∞

=1n

na  converges. 

ii. nda nn ∀≥    : ∑
∞

=1n

nd diverges ⇒∑
∞

=1n

na diverges. 

 

Theorem 2: Limit Comparison Test: (LCT): 
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Section 5: 
Theorem 1: The Ratio Test: 

Suppose ∑
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na  is a series of positive terms. 
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ii. diverges  series1⇒>ρ  

iii. failsTest  1⇒=ρ  

Theorem 2: The Root Test: 

Suppose ∑
∞

=1n

na  is a series of nonnegative terms. 

Suppose n
n

n
a

∞→
=ρ lim , then: 

iv. converges series 1⇒<ρ  

v. diverges series1⇒>ρ  

vi. failsTest 1⇒=ρ  



Section 6: 
Definition 1: 

Suppose {an} is a sequence of positive terms, then: ( ) ...1 4321

1

+−+−=−∑
∞

=

aaaaa
n

n

n
 is called an 

alternating series. 

 

Theorem 1: The Alternating Series Test (AST): 
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Theorem 2: Alternating Series Estimation Theorem (ASET): 
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Theorem 3: Absolute Convergence Test (ACT): 
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Definition 2:  
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Section 7: 
Definition 1: 
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Theorem 2: 
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Theorem 3: 

( )∑
∞

=

−
1n

n

n axc is a power series with radius of convergence R and suppose ( )RaRaI +−= ;  the 

internal of interval of convergence, then: 

( )∫ dxxf  exists for all x in I, and ( ) ( )∑∫
∞

=

+
−

+
+=

0

1

1n

nn ax
n

c
cdxxf  for Ix ∈  

 

Theorem 4: 
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Section 8: 
Definition 1: 

I is a open interval of center a. 

f(x) is a function which is infinitely differentiable on I. 

n a positive integer. 

Then: The Taylor polynomial of order n generated by f at ax =   is: 
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Section 9: 
Taylor's Theorem: 

I is an open interval of center a. 

f(x) is a function which is infinitely differentiable on I. 

Suppose ( )xPn  is a Taylor polynomial of order n generated by f at ax = . 
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Section 10: 
Theorem 1: The Binomial Theorem: 
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Section 11: 
Definition 1: 

I = [a, b] is a closed interval, and ( )xf  function defined on I. 

We say that f is piecewise continuous on I if: 

i. f  has only finitely many points of discontinuity on . 
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Definition 2: 

( )xf  is a piecewise continuous function on [ ]π2,0 . The Fourier series of f  is defined as 
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Theorem 1: 

( )xf  is a function defined on [ ]π2,0  

if f and f' are piecewise continuous on [ ]π2,0 , then : continuity discontinuity   
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